SIAM MDS20 MS13 Advances in Subspace Learning and Clustering Mini-Symposium
Title: Clustering Quality Metrics for Subspace Clustering
Abstract: We study the problem of clustering validation, i.e., clustering evaluation without knowledge of ground-truth labels, for the increasingly-popular framework known as subspace clustering. Existing clustering quality metrics (CQMs) rely heavily on a notion of distance between points, but common metrics fail to capture the geometry of subspace clustering. We propose a novel point-to-point pseudometric for points lying on a union of subspaces and show how this allows for the application of existing CQMs to the subspace clustering problem. We provide theoretical and empirical justification for the proposed point-to-point distance, and then demonstrate on a number of common benchmark datasets that our proposed methods generally outperform existing graph-based CQMs in terms of choosing the best clustering and the number of clusters.
Author:
John Lipor, Portland State University, U.S
Join Zoom Meeting
https://wse.zoom.us/j/98222946324?pwd=UVJPTGkyNG5nTjhiRWpqNFVMN08yQT09
Meeting ID: 982 2294 6324
Password: 143648